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The effect of surface-limited microcracks 
on the effective Young's modulus of ceramics 
Part  II Application of analysis to particular microcrack geometries 
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This paper considers the details of crack orientation and crack geometry effects on the dynamic 
modulus model and the rule-of-mixtures model developed in Part I for surface-limited 
microcracking damage in ceramics. In particular, the implications of using indentation cracks as 
a model crack system are considered, including accommodation of the hemispherically deformed 
zone ligament that bridges part of the opposing crack surfaces for indentation crack systems. 

1. Introduct ion 
In Part I [1], the authors modelled surface-limited 
microcrack damage in terms of the elastic modulus of 
a composite bar. The microcracked bar was viewed as 
a two- or three-layer composite, with the micro- 
cracked layer(s) having a reduced elastic modulus 
(Fig. 1 in Part I [1]). The fractional modulus change 
for a surface-microcracked bar was modelled in terms 
of: (i) a rule of mixtures (ROM) formulation, which 
implies a static, tensile measurement of modulus and 
by (ii) the Bernoulli-Euler beam equation, which is 
appropriate to a dynamic elastic modulus measure- 
ment of the overall modulus [1]. The ROM and dy- 
namic modulus expressions were thus functions of Er, 
the elastic modulus of the microcracked layer. To 
express the composite (overall) modulus explicitly in 
terms of microcrack parameters, Etwas expressed dir- 
ectly in terms of microcrack orientation, geometry and 
number density. 

In this study we consider the effect of particular 
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where v:l, vz2 = volume fraction of microcracked 
layer 1 and microcracked layer 2, respectively, f l ,  
f2 = crack orientation function for the cracks in 
microcracked layer 1 and microcracked layer 2, 
respectively, G~I, Gr2 = crack geometry factor 
2(A2)/rt(P) for the cracks in microcracked layer 
1 and microcracked layer 2, respectively, and Nrl, 
Nr2 = number density of microcracks in micro- 
cracked layer 1 and microcracked layer 2, respectively. 
The two-layer ROM case (one microcracked layer and 
one undamaged layer) for the relative modulus change 
is given by the first term in the sum on the right-hand 
side of Equation 1. 

The three-layer dynamic modulus model [1] again 
consists of two microcracked surface layers having 
moduli E/~ and E{2 and an intermediate, undamaged 
layer of modulus E~ where the relative modulus 
change may be expressed as 
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crack geometries and crack orientations, including 
a "model" crack field produced by a distribution of 
indentation cracks. 

where RI =dtl/ds, R2 = dr2/ds. If d/2 = 0 ,  then 
R 2 = 0 and Equation 2 applies for the two-layer 
model consisting of one microcracked layer and an 
undamaged layer [1]. 

2. General ized models for surface- 
l imited microcrack damage 

For convenience, the authors' previous expressions for 
surface-limited microcracking [1] are highlighted in 
Equations 1 and 2 below. The three-layer ROM model 
[1] consists of two microcracked surface layers having 
moduli Erl and E;2 and an intermediate, undamaged 
layer of modulus E~. The relative change in modulus 
may be expressed as 

0022 2461 �9 1993 Chapman & Hall 

3. Selection of microcracking models 
for use wi th  the generalized 
expression of surface- l imited 
microcracking 

As expressed above, the ROM and dynamic modulus 
models can be expressed in terms of any one of a num- 
ber of microcracking theories [2-6]. It should be 
emphasized that to obtain Equations 1 and 2 we first 
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modelled a body having surface-limited microcrack- 
ing as a layered composite with an undamaged layer 
and a layer (or layers) having reduced modulus, where 
the reduced modulus represents the effects of micro- 
cracking in the surface layers [1]. Microcracking with- 
in the surface layer then can be expressed in terms of 
available theories for microcracks whose centroids are 
(on average) homogeneously distributed in space 
[2-5]. 

Budiansky and O'Connell [2], Salganik [3], 
Hoenig [4], and Laws and Brockenbrough [5] each 
express the effective Young's modulus E of the micro- 
cracked body as 

E = E~(1 - i s )  (3) 

where E s refers to the non-microcracked Young's 
modulus. The function f depends on the spatial ori- 
entation of the microcracks (Table I). The crack dam- 
age parameter ~ can be expressed [2-5]  as 

2 ( ( A 2 ) ' ~ N  
= -  = GNv (4) 
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where N, = volume number density of microcracks, 
(A 2) = mean of the square of the crack surface area, 
( P )  = mean crack perimeter and G = crack geometry 
parameter. Thus the crack damage parameter ~ can be 
expressed as a function of the microcrack volume 
number density N,, the crack geometry, and the crack 
dimensions. In this paper we shall use the product 
GNv as our crack damage parameter rather than ~, 
since we seek to emphasize the functional relation- 
ships between microcrack geometry and crack num- 
ber density. 

The microcracking-modulus theories of Budiansky 
and O'Connell [2], Salganik [3], Hoenig [4], and 
Laws and Brockenbrough [5] are linearly dependent 
on the crack damage parameter ~ (Equation 4), and 
hence these theories [2-5] may be termed "linear 
modulus decrement models". The variational tech- 
nique developed by Willis [6], which in turn is based 
on the Hashin Strikman method, is a higher-order 
microcracking-modulus decrement theory. While 
Willis's theory may allow calculations of modulus 
decrements for somewhat higher crack number densit- 
ies within a damaged surface layer, Willis's expres- 
sions are mathematically unwieldily and thus in this 
study we employed the linear microcracking theories. 

Differences between the four linear microcracking 
theories include the treatment of the spatial alignment 
of microcracks. Budiansky and O'Connell [2] and 
Salganik [3] deal with randomly oriented microcrack 
populations only, Hoenig [4] treats aligned micro- 
cracks, and Laws and Brockenbrough [5] treat both 
randomly oriented and aligned microcrack popula- 
tions. While in each of the four theories the alignment 
functionfis  expressed as a function of Poisson's ratio, 

Budiansky and O'Connell [2] express f as a function 
of both v (Poisson's ratio of the microcracked state) 
and Vo (Poisson's ratio of the non-microcracked 
state). Salganik [3] and Laws and Brockenbrough [5] 
express f in terms of Vo only. Despite these apparent 
differences in the form off,  the values o f f  differ little 
from one another for realistic ranges of v and Vo [7]. 
Thus, the linear microcracking theories [2-5]  are 
quite similar. In order to treat particular microcrack 
geometries, we chose to describe the layer modulus in 
terms of Laws and Brockenbrough's model [5]. 
Table I summarizes Laws and Brockenbrough's [5] 
microcracking relations, which include "standard" 
crack geometries of circular, elliptical, and slot-type 
crack geometries. 

4. Relative crack size versus layer 
depth considerations 

The nature of the microcracked surface layer(s) for 
particular microcracked bodies can be classified in 
terms of the mean microcrack size {c) and the depth 
of the microcrack damage layer, d t. In this paper, we 
shall consider two limits of relative crack/layer depth. 

If {c) ~ de, then the microcracked layer itself can 
be considered to be a three-dimensional body. Within 
the microcracked layer, the implicit assumption [2-7]  
that the microcracks are distributed homogeneously 
in space (over size scales large compared to @), the 
mean crack dimension) may or may not be valid*. If 
microcracks are distributed homogeneously on aver- 
age, and if the crack alignment, crack geometry and 
crack number density in the layer(s) can be deter- 
mined or estimated, then the effective modulus of the 
microcracked layer can be calculated based on the 
linear modulus-microcracking relationships [2-6].  
The effective elastic modulus of the entire specimen 
can then be calculated based on the rule-of-mixtures 
model or the dynamic modulus model developed by 
the authors (Equations 1 and 2 in section 2). The case 
that ~c) ~ d t  could correspond physically, for 
example, to a microcracked specimen in which the 
microcrack-damaged surface layer(s) resulted from 
a martensitic-type phase transformation. Alternat- 
ively, the case that { c ) ~  d~ might correspond to 
a layered composite specimen in which the layers were 
microcracked *. 

A second asymptote for the crack size versus layer 
depth relation is the case that ( c ) =  d~, where the 
crack layer depth is defined by the penetration of the 
cracks in the microcracked layer (assuming the cracks 
are oriented perpendicular to the specimen surface). 
This case might correspond to, for example, a surface 
crack array formed via surface grinding [9 11] or 
thermal shock of a brittle material. Alternatively, 
{c) = d t might correspond to a crack field formed by 

* Homogeneous distribution in space refers here to the location of the centroids of the crack surfaces. Homogeneous spatial distribution 
makes no assumptions about the mutual orientation of the crack faces. Thus microcracks can be, on average, homogeneously distributed in 
space but oriented parallel to one another, oriented randomly with respect to one another, or oriented in some intermediate, partially aligned 
state. 

If the layer's grain size were much smaller than the layer thickness, microcracks induced by thermal expansion anisotropy or phase 
transformations would probably be much smaller on average than the layer thickness [8]. 
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an array of indentation cracks on one or more speci- 
men surfaces. 

Although indentation cracks have been used as 
model cracks in a number of studies, the detailed 
morphology of indentation cracks is not included in 
the crack geometries (circular, elliptical and slot, as 
listed in Table I) typically considered in microcrack- 
modulus models [2-5]. In order to use the expressions 
developed in Part I [1] to describe the indentation 
crack-induced changes in Young's modulus, we shall 
first review the morphology of indentation cracks and 
then we shall modify the microcrack-modulus models 
to accomodate the indentation crack morphology. 

5. I n d e n t a t i o n  cracks as an e x a m p l e  
of  a model  crack system 

Sharp indenters (such as Vickers or Knoop) may 

produce an "ideal" distribution of surface micro- 
cracks, in which the number, size and spatial location 
of the microcracks can be controlled. However, to 
model an array of indentation cracks, we should con- 
sider in some detail the morphology of individual 
indentation cracks. The modulus-microcracking rela- 
tions (Equation 3, Tables I and II) are posed in terms 
of (A2), the mean of the square of the crack size, and 
(P),  the mean crack perimeter (Equation 4). 

For Vickers indentation cracks, two idealized crack 
morphologies are typically cited [12, 13]: (i)"half- 
penny" or semi-circular radial-median crack systems, 
and (ii) Palmqvist cracks, consisting of a system of 
separate semi-elliptical cracks (see Fig. 1 for schematic 
diagrams of each idealized crack system). Vickers in- 
dentation-induced Palmqvist cracks have been ob- 
served in ceramics, glass-ceramics and cermets 

T A B L E I Microcrack ing-modulus  relations for three-dimensional crack distributions [5] a 

Crack geometry f(v o) G a Orientat ion 

Penny 16(1 - Vo2)/3 ~a3/2 N ( a  3) Aligned 

16(1 - Vo2(10 - 3Vo)/45(2 - % )  Random 

Half penny 16 ( 1 - v2)/3 rta 3/4 0 . 5 N ( a  3 ) Aligned 
16(1 - v2)(10 - 3Vo)/45(2 - %)  Random 

Slit ~2(1 - Vo 2)/2 2c 2/2/(c + l) 4N(c  2/2 ) /n  (c + /}  Aligned 

n2(1 + vo)(5 - 4%)/30  Random 

Ellipse 16(1 -- v2)/3 x2bd2 /4E(k )  N g ( b d 2 ) / 2 E ( k )  Aligned 
Random 

16(1 - v2)(10 - 3Vo)/45(2 - %)  

Half-ellipse 16(1 - Vo2)/3 rc2bdZ/8E(k) N ~ ( b d 2 ) / 4 E ( k )  Aligned 
16(1 - Vo2)(10 - 3Vo)/45(2 - v o) Random 

a vo = Undamaged  Poisson's  ratio, ( a )  = average radius of crack for penny and halfpenny cracks, c = half of average crack size for slit 
cracks, l = depth of slit cracks, b = half of major  axis for elliptical and half-elliptical cracks, d = half of minor  axis for elliptical and 
half-elliptical cracks, E(k) = complete elliptical integral of the secorM kind, k = (b 2 - d2)l/2/b. 

T A B L E  I I  Crack geometry modifications for three-dimensional microcrack models treating aligned cracks a 

Crack geometry f (v  0 ) Area Perimeter b 

3D slit, unmodified 

Modified 3D slit 

Modified 3D slit (elliptical-indent bot tom)  

Half-ellipse (unmodified) 

Modified half-ellipse 

Modified half-ellipse (elliptical-indent bo t tom)  

Palmqvist 

rc2(1 v~)/2 2cl 2c + 21 

x2(1 - VoZ)/2 2cl - rch2/2 2c + 21 + xh 

~2(1 - %2)/2 2el - r~h2k'/2 2[c + I + hE(k)] 

16(1 vo2)/3 ~bd/2 2bE(k)  

16(1 - v~)/3 r~(bd h2) /2  2bE(k) + xh 

16(1 - v~)/3 ~(bd - h2k ' ) /2  2E(k) (b + h) 

16(1 - v~)/3 (rcbd/4) - h d  bE(k) + d - h 

a v0 _ Undamaged  Poisson 's  ratio, c = half of average crack size for slit cracks, l - depth of slit cracks, b = half of major  axis for elliptical and 
half-elliptical cracks, d = half of minor  axis for elliptical and half-elliptical cracks, h = half of indentation impression diagonal size, 
E(k) - complete elliptical integral of the second kind, k = (b 2 - d z) 1/2/b, k' = (I - k 2) 1/2. 
b Perimeter does not  include free surface. 
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[14-19]. Some researchers have argued that the Palm- 
qvist-type crack morphology occurs at low indent 
loads (for a c/a ratio less than about 3, where the crack 
length c and indent diagonal length a are defined in 
Fig. 1) [14-17]. At higher indentation loads the crack 
morphology switches to the halfpenny type [14-17]. 

However, Palmqvist cracks are not necessarily lim- 
ited to low-load regimes, and Palmqvist crack mor- 
phologies are not always limited to an idealized 
system of four semi-elliptical cracks per Vickers in- 
dent. By serial polishing, Shetty et al. [18, 19] ob- 
served non-ideal Palmqvist cracks generated by 
Vickers indentation at loads from 50 to 200 N in 
Corning Pyroceram 9606 glass-ceramics and at loads 
up to 500 N in WC Co cermets (Fig. 2). Thus, even at 
relatively high loads, a well-developed radial-median 
crack system (a halfpenny crack) was not observed for 
the Pyroceram and WC-Co cermets [18, 19]. 

In addition to Palmqvist cracks, the halfpenny or 
semi-circular crack is the second idealized form of 
Vickers indentation crack [20, 21]. As noted above, 
ceramics that exhibit Palmqvist crack morphologies 
at low loadsmay develop halfpenny cracks at higher 
loads. Thus the halfpenny crack morphology has been 
termed a "fully-developed radial-median crack sys- 
tem". The ideal halfpenny morphology also may be 
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disrupted by microstructural features. If a polycrystal- 
line specimen's grain size approaches the indent im- 
pression size, then Vickers indent cracks can exhibit 
a number of complicated systems of multiple cracks in 
which the cracks tend to follow grain boundaries [22]. 

To accurately model a system of indentation cracks, 
we thus must determine the particular crack morpho- 
logy, which can in fact depend on the indentation 
load, the specimen's microstructure, the relative load 
range, and a number of other factors. It is only when 
our assumed (or measured) crack geometry is realistic 
that we can utilize the flexibility of the indentation- 
generated cracks to test surface microcracking-mod- 
ulus theories. 

For both Vickers and Knoop indentations, a plas- 
tically deformed zone, commonly taken to be hemi- 
spherical in shape, is formed directly below the 
indentation impression (Fig. 3). 

5.1. Difficulties and limitations in utilizing 
indentation cracks 

From an experimental standpoint, indentation cracks 
are quite convenient for a study of surface-limited 
microcrack damage. Via indentation, a controlled ar- 
ray of cracks can be introduced into the specimen 
surface(s), where the indentation crack size, crack ori- 
entation and crack location can be controlled by the 
experimenter. 

For a microcrack field produced by indentation at 
a fixed load, the thickness of the microcracked surface 

(o) 
Figure 2 An example of a non-ideal Palmqvist crack morphology 
(after Shetty et aS. [19]). 
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{b) 

Figure l Schematic diagram of idealized Vickers indentation crack 
morphologies: (a) the halfpenny or semi-elliptical radial-median 
crack system, and (b) Palmqvist- cracks, consisting of a system of 
separate semi-elliptical cracks. 
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Figure 4 For indentation cracks, a schematic diagram for a two- 
layer composite model showing the thickness of the microcracked 
surface layer, which is identical to the mean depth of the indentation 
cracks. 
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layer will be identical to the mean depth of the in- 
dentation cracks (Fig. 4). Thus the theories assuming 
a three-dimensional crack array may not be adequate 
to describe the modulus of the damaged layers. In 
addition, the indentation crack geometry does not 
coincide with the standard crack geometries listed in 
Table I. Finally, there is a residual stress field asso- 
ciated with indentation-induced microcracks that may 
alter the measured elastic modulus. 

5 .2 .  M o d i f i c a t i o n  o f  c r a c k  g e o m e t r y  
e x p r e s s i o n  t o  a c c o u n t  f o r  i n d e n t a t i o n  
c r a c k  g e o m e t r y  

The geometry of even fully-developed indentation 
cracks differs from the idealized crack geometries 
listed in Table I (see also the discussion in section 5). 
To a first approximation, indentation cracks are semi- 
circular or semi-elliptical rather than circular or ellipt- 
ical. In addition, the faces of the indentation cracks are 
joined by a plastic zone ligament (Fig. 5). 

For three-dimensional microcrack distributions, we 
choose to represent the crack geometry by the general- 
ized geometry parameter  G = 2(AZ) /n (P)  [2-5].  In 
contrast to the standard linear microcracking-modu- 
lus theories [2-5],  we compute the mean of the square 
of the crack area (A 2) and crack perimeter ( P )  as 
they are modified by the presence of the plastically 
deformed zone "ligament". For an unmodified semi- 
elliptical crack (Table I) the mean crack area is nbd/2, 
where b and d are the semi-major and semi-minor axes 
of the ellipse, respectively. To account for the crack 
face area reduction due to the plastic zone ligament 
(Table II) we subtract nh, where h is the radius of the 
ligament (plastic zone) in the plane of the semi-ellipt- 
ical crack. If we assume that the plastically deformed 
zone has the same eccentricity as the crack, the modi- 
fied crack perimeter and surface area are as shown in 
Table II under "modified half-ellipse, elliptical indent 
bottom". 

Table II compares the expressions for the mean 
crack area and mean crack perimeter for the standard 
crack geometries (slit, penny and ellipse) to expres- 

F h ~ l  

(c) 

Figure5 (a) Idealized half-ellipse crack, (b) indentation crack, 
(c) half-ellipse crack modified to account for plastic zone ligament. 

sions for the same crack geometries, but as modified to 
account for the plastic zone ligament linking the crack 
faces (Fig. 5). 

Alternatively, the indentation crack surface-dam- 
aged layer can be modelled as a two-dimensional 
crack distribution where an array of through-plate 
cracks are oriented normal to the plane of the plate 
(Appendices A and B). However, the subsurface geo- 
metry of the indentation crack (semi-circular or semi- 
elliptical, for example) cannot be represented by 
a two-dimensional model. The three-dimensional ana- 
logue of the two-dimensional slit crack distribution is 
a three-dimensional through-plate crack. 

The two-dimensional crack models can be modified 
to treat the plastic zone (ligament) of the indentation 
crack such that an indentation crack of length 2c can 
be modelled as two separate cracks, each of length 
c - a (Fig. 6). (The length of the indentation crack is 
2c, which includes 2a, where 2a is the diagonal length 
of the indentation impression.) 

6. Strategy for experimental  testing 
For model surface-microcrack systems, we can inde- 
pendently compare the predicted dependence on the 
crack orientation, crack geometry, layer geometry and 
crack number density with the experimental data. 
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crack geometry and the second on the damaged-layer 
geometry [1]. In this section, we fix the layer geometry 
by assuming a constant value for the ratio of the 
thickness of the damaged layer(s) to that of the speci- 
men. Also, we shall label two nominally identical 
microcracked specimens as specimens I and II. Fur- 
thermore, we assume that the initial (undamaged) 
Poisson's ratio is identical for specimens I and II and 
that the induced crack systems in specimens I and II 
have the same alignment*. 

Specimen I is damaged by cracks of mean area <A!) 
and  mean crack perimeter <P~). Specimen II is 
damaged by cracks of mean area <Au> and mean 
perimeter <Pn). Thus the relative slopes Sl/Sn of the 
(E~ - E)/E, versus N plots will be given by 

S, <A~/P,> 
S,, - <A~/P,,) (6a) 

which is a function of crack geometry only $. 
In particular, if specimens I and II contain semi- 

elliptical microcracks of mean semi-minor axis lengths 
dl and dH and mean semi-major axis lengths bl and bii, 
the relative slope will be given by 

�9 C - O  > �9 C- - (2  

(el 

F i g u r e  6 (a) Idealized two-dimensional slit crack, (b) indentation 
crack, (c) two-dimensional model of indentation crack. 

6,1. N, the microcrack number density 
For two-layer composites (one microcracked surface 
layer bonded to a microcrack-free layer), the frac- 
tional modulus change for both the ROM model 
(Equation 8 in Part I [1] and the dynamic modulus 
model (Equation 11 in Part I) are linear functions of 
the crack number density N, such that 

Es - E 
- S N  ( 5 )  

Es 

where S depends on the crack alignment parameterf  
crack geometry parameter G, and the microcracked 
layer's relative thickness. Equation 5 applies to three- 
layer composites i f f a n d  G are identical for each of 
two microcracked layers of equal thickness (Equation 
7 in Part I for the ROM model and Equation 42 in 
Part I for the dynamic modulus model). Thus, for 
specimens containing surface microcrack populations; 
a plot of(Es -- E)/E~ versus N should be a straight line 
of slope S. In Part III [23] we test this prediction. 

6.2. Crack and  layer geome t r i e s  
Surface-limited microcrack systems exhibit two geo- 
metrical hierarchies, one based on the average micro- 

<At~P,> _ [(~b,d,/2) 2] [ 2b, E(k,,) 7 
<A~/P,,) L 2b,E(k,) J L(~b,,d,,/2)2j 

[ bld~ E(k.) 
blld2[ ] (6b) 

where E(k)= complete elliptical integral of second 
kind and 

(b 2 - d2)1/2 
bl 

(b 2 - d2)I/2 
k i t  - -  b, 

If the eccentricities of semi-elliptical cracks I and II are 
the same, then E(k~)= E(kn) and Equation 6b be- 
comes 

< A2/p,) bid? 
- ( 6 c )  <A2/p,,> b,,d 2 

If both crack I and crack II are semi-circular 
(that is bj = dl = q - - r ad ius  of crack I and bn = d. 
= r n = r a d i u s  of crack II), then kl =kH = 0  and 

E(kO = E(k.) = Tr and Equation 6b becomes 

<A~/PI) r~ 
- -  ( 6 d )  <A2/p,, > r~ 

For slit cracks of length 2a~ and 2a., and crack 
depths dj and d,,  the relative slope will be 

<A2/pt) 
<A~/P,, ) L2(a, + .,)J L (2.1,",,) J 

* From Table I, note that the crack orientation function f i s  a function of the Poisson's ratio v o of the undamaged state of the specimen. 

Identical crack layer geometries were assumed for specimens I and II, thus the ratio of the layer geometry polynomials for I and I[ will 
become unity I l l .  Comparing specimens with differing layer geometries would mean that Equation 5 would include the ratio of the 
appropriate layer geometry polynomials [1]. 
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= [(a,d,) 2 ] [ (a .  + d.)~ 

[_(andn)2] [_ (a, + d,) 
( T a )  

If for a slit crack, the crack length is twice the crack 
depth (which is analogous to the semi-circular crack 
where the crack length - or twice the crack radius is 
twice the crack depth), then a~ = d~ = ~ and an = dn 
= [3, thus Equation 7a becomes 

(A2/p , )  ~4 (213) ~3 
(A2/Pll)  - [34 ~ - 133 (7b) 

Thus using experimentally determined mean crack 
sizes and geometries of two specimens containing 
model crack systems, the relative slope S~/Sn can be 
predicted uniquely, without reference to the crack 
number density or the crack alignment (if the crack 
orientation is the same in the two cases). 

As a particular example, consider cracks in speci- 
men 1 to have an experimentally observed mean sur- 
face crack length ((~). Cracks in specimen II have an 
experimentally observed mean surface crack length 
( I n )  = ([1)/2. If the cracks in specimens I and II 
were semi-circular, then the 
(Es - E)/Es versus N would be 8 
tion 6c). If the cracks in both 
cracks in which the length of the 

relative slope of 
(according to Equa- 
specimens were slit 
crack's surface trace 

was twice the crack depth, then the relative slope of 
(Es - E)/Es versus N would be 8 also (according to 
Equation 7b). 

6.3. Crack o r i en t a t i on  
If microcrack damage of similar crack geometry and 
size, but differing crack orientation, is induced in two 
nominally identical specimens, then the crack orienta- 
tion functionf(vo) may be tested independently of the 
crack geometry and crack number density. For 
example, if cracks of mean area ( A ) a n d  mean peri- 
meter ( P )  were induced in both specimens I and II, 
but microcracks in specimen I were randomly 
oriented and microcracks in specimen II were aligned, 
then S~/S., the ratio of the (Es - E)/E, versus N slopes 
is given by f(Vo),/f(Vo)r, where the subscripts a and 
r refer to "aligned" and "random" crack orientation, 
respectively. For example, for elliptic microcracks of 
fixed geometry, the relative slope would be (see 
Table I) 

f(vo)a 16(1 - Voa)/3 

f(vo)r 16(1 - Vo 2) (lO - 3Vo)/45(2 - Vo) 

15(2 -- Vo) 
- (8 )  

(10 - 3Vo) 

while for slit cracks of fixed geometry, the relative 
slope would be written as 

f(vo)~ ~2(1 - vg)/2 

f(vo); n2(1 + Vo)(5 -- 4Vo)/30 
15(1 - vo ~) 

= (9) 
(1 + Vo)(5 - 4Vo) 

For Vo = 0.25, the numerical values off(Vo)a/f(vo), are 
2.838 and 2.813, respectively, for the elliptical and the 

slit cracks. Thus, the relative slope of the (Es - E)/Es 
versus N plots could be predicted prior to performing 
the experiment, thus providing a check on the aligfl- 
ment factors independent of crack geometry and crack 
number density. 

7 .  S u m m a r y  

In Part I [1] we developed expressions for the frac- 
tional change in modulus due to surface-limited 
microcracks. Part I gives the modulus change in terms 
of the geometry of the microcracked layer and in terms 
of general factors f (crack alignment), G (crack 
geometry) and N (crack number density), where fand  
G can be expressed in terms of a number of existing 
modulus-microcracking theories [2-5] . This paper 
considers the application of the models developed in 
Part I to particular crack geometries. 

For the case of model indentation crack distribu- 
tions, modifications were made to the crack perimeter 
and area calculations to account for the ligament 
bridging the two crack faces in an indentation crack. 

Experimentally [23], the fractional modulus change 
of specimens subjected to indentation-crack damage is 
described well by three-dimensional crack models 
modified to account for the plastic zone ligament. 

In addition, this paper discusses approaches for 
experimentally testing the predictions of the ROM 
and dynamic modulus models. Part III [23] repres- 
ents experimental data on a model indentation crack 
system in polycrystalline alumina and compares the 
experimental data with expressions developed in 
Part I and in this paper. 

Appendix  A: A relation between expres- 
sions for two-d imensiona l  through-p la te  
slit cracks in plates and three-d imen-  
sional slot cracks in surface-damaged 
bars 
For aligned slit cracks in three dimensions, the 
Young's modulus normal to slits, E, is (Table I, [5] ) 

E aZl2N 
- 1 - f G N  = 1 - 2n(1 - Vo 2 ) -  

Eo a + l  
(A1) 

For cracks of length 2a and depth l, G becomes 
214a21Z/2(a + l)]/n and f =  l t 2 ( 1  - -  Vo2) /2 .  This expres- 
sion for G assumes that the crack perimeter ( P )  does 
not include the single free surface of the slit crack 
(Equation 4). 

For a plate of surface area A and thickness t, the 
volumetric crack number density N equals n/At where 
n is the number of cracks in the specimen and At is the 
specimen volume. If we express t in terms of a constant 
multiple k of the crack depth l, then t = kl and Equa- 
tion AI becomes 

v 2 a21( n ) E _ 1 - 2n(1 (A2) 
Eo - ~  h ~  

As the crack depth l approaches the plate thickness 
(that is, k --, 1), the crack becomes a through-slot type 
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crack with length 2a and depth l: 

l i r a - -  = 1 - 2re(1 (A3) k-*l Eo V~ + / 

If we ignore both of the free surfaces of the slot crack 
through the plate, then Equation A3 becomes 

lim__ E _ = 1 - 2~(1 - VOJ--W- 
k ~ l  Eo 

= 1 -- 27r(1 -- v2)a2N. (A4) 

where Na = n/A is the crack number density per unit 
surface area. If the crack field is sufficiently dilute that 
the factor 27r(1 - v2)a2Na is small compared to unity, 
then using the geometric series expansion of Equation 
A4 and retaining only the terms of order O(N~) gives 

E 1 
- -  ~ ( A S )  
Eo 1 + 2~(1 - v2)a2Na 

which is identical to the expression obtained by 
Hasselman and Singh [24] for dilute two-dimensional 
aligned crack distributions (Appendix B, Equa- 
tion B3). 

Appendix B: Two-dimensional  models of 
aligned, through-plate cracks - aligned 
two-dimensional crack models 
Two-dimensional microcrack-modulus models typ- 
ically treat an array of through-plate cracks oriented 
normal to the plane of the plate [24 26]. Based on 
Yokobori and Ichikawa's expression for the strain 
energy of coplanar rows of through-plate cracks under 
plane strain conditions [25], Hasselman and Singh 
[24] expressed the effective Young's modulus of the 
plate normal to the plane as (Fig. B1). 

E0 
E =  

[ 1 - -  { 1 6 N  a h 2 (l - v ~ ) l n [ c o s  (~a/2h)]  }/~] 

(B1) 

where E0, v0 = undamaged Young's modulus and 
Poisson's ratio, respectively, N a = number density of 
cracks per unit area, a = half-length of the crack and 
h = half of transverse intercrack spacing. For a very 
dilute crack number density (when N ~ 0 ,  h--+ oo), 
tn[cos(na/2h)] may be approximated as [27] 

'n[ ( a)l  aJ2h'2 os 2 , oj2h,',2 
(~a/2h ) 6 170ra/2h ) 8 

O32) 
45 2520 

In the dilute crack number density approximation 
where h > a, only the first t e rm of Equation B2 is 
retained, so that Equation B] becomes 

Eo 
E = 

1 + 2~Na(1 - Vo2)a 2 
O33) 

where all parameters are as defined in Equation B1. 
Delameter et al. [26] derived the effective Young's 

modulus, E, for a sheet under plane stress conditions 
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Figure B1 Schematic diagram of a plate with a rectangular array of 
cracks with a transverse intercrack spacing of 2h, as modelled by 
Hasselman and Singh [24]. 

Row b 

T 
Stock 

Figure B2 Flat plate with a doubly periodic rectangular array of 
cracks, having rows and stacks (after Delameter et al. [26]). 

containing a rectangular array of through-plate cracks 
oriented normal to the plane of plate (Fig. B2) as 

Eo 
E = 1 + (2~a2B]/bd) 034) 

where Eo = undamaged Young's modulus, a = half- 
length of the crack, d = transverse intercrack spacing 
and B] = 2(d/Tra) z ln[sec(~a/d)]. When d > a, B] ap- 
proaches unity. Also 1/bd is equivalent to N,, the 
number density of cracks per unit area. Thus for the 
dilute crack case, Equation B4 becomes 

Eo 
E - 035) 

1 + 27ra 2N" 

For  a dilute array of through-plate cracks, the expres- 
sions of Hasselman and Singh [24] and Delameter 
et al. [26] differ only by a factor of (1 - Vo2). 
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